A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-Ion Batteries

Chia-Yun Chou,* Myungsuk Lee,‡ and Gyeong S. Hwang*†‡

1Materials Science and Engineering Program and 2McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States

Supporting Information

ABSTRACT: Sodium-ion batteries (NIBs) have recently received great attention as a potential complement to existing lithium-ion battery (LIB) technology. Because of the difference between Na and Li in nature, what has been an attractive anode material for LIBs may or may not be utilized for NIBs. Using density functional theory calculations, we examine and compare the sodiation behaviors of Si, Ge, and Sn, in comparison also to their lithiation processes if needed. We evaluate single Na incorporation in the host matrices (M = Si, Ge, Sn) and also discuss the formation of Na–M alloys in terms of structural evolution and energetics, along with their mechanical and diffusion properties. While the alloy systems considered in this work appear to undergo similar transformation during sodiation and lithiation, the M networks tend to lose connectivity more rapidly in the former. At Na/Li:M = 1:1 ratio, the M networks in α-NaM alloys already disintegrate into compact isolated clusters while those in α-LiM still maintain extended connectivity via puckered conformation. This unique difference in their specific atomic arrangements contributes to the more rapid softening, larger volume expansion, and faster increase in Na diffusivity with sodiation in comparison to the case of lithiation.

1. INTRODUCTION

Lithium-ion batteries (LIBs)1,2 currently dominate the electrical energy storage market for portable applications; their appealing attributes may include that Li is the lightest metallic element with a small ionic radius and has very low redox potential, which enables cells with high energy density, rate capability, and voltage. However, with the enormous demand for LIBs as a major power source in electronics and vehicles, the availability and voltage. However, with the enormous demand for LIBs to be commercially viable.

Thus far, few materials involving different sodiation mechanisms (intercalation, conversion, and alloying mechanisms)3 have been considered for NIB anodes. Among them, alloy-type materials have received increasing attention due to their large sodiation capacities, such as NaSi (954 mAh g⁻¹),4 NaGe (369 mAh g⁻¹),5 Na₁₂Sn₄ (847 mAh g⁻¹),5 Na₁₅Pb₄ (485 mAh g⁻¹),6 and Na₃Sb (660 mAh g⁻¹).7,10 However, their utilization is still challenging due to the significant volume expansion, which leads to anode degradation and poor capacitance retention during cycling.9,12

Experimentally, group IV elements (Si, Ge, and Sn) have been well studied as anode materials for LIBs,3–6–9–19 but the evaluation of their application in NIBs has just begun both experimentally and theoretically.3–7,9,20 Previously, quantum-mechanical calculations based on density functional theory (DFT) have been successfully employed to develop a comprehensive understanding of the lithiation properties of Si, Ge, and Sn;21–24 similar approaches can be extended to assess their sodiation properties in order to speed up the discovery and development of anode materials for NIBs.

Received: February 2, 2015
Revised: June 8, 2015
Published: June 12, 2015
In this work, we use DFT calculations to examine and compare the sodiation behaviors of Si, Ge, and Sn. We first investigate the atomic structure, stability, and bonding mechanisms of interstitial Na in crystalline Si, Ge, and Sn and how Na migration is influenced by its bonding interaction with the host matrix. Only the diamond structure is considered for crystalline host matrices (= Si, Ge, Sn) for direct comparison, although other allotropes (β-Ge and β-Sn)\(^{25}\) may exist. Then, DFT-based \textit{ab initio} molecular dynamics (AIMD) simulations are performed to determine the atomic configurations of amorphous Na–M (a-Na–M) alloys (ranging from low to highly sodiated phases). For each alloy system, we analyze the structural evolution with Na content and evaluate its relative stability in connection to the sodiation capacity by calculating mixing/formation enthalpies. We also examine the variations in Na diffusivity and bulk modulus to assess the relationship between the atomic structure and the diffusion and mechanical properties, as the alloy structure undergoes considerable changes. Comparisons between the lithiation and sodiation properties of Si, Ge, and Sn are also made whenever the opportunity presents itself. The fundamental findings may help improve the understanding of the sodiation processes in group IV materials and further explain the differences in their applications to NILBs and LIBs.

2. COMPUTATIONAL METHODS

Our DFT calculations within the Perdew–Wang 91 generalized gradient approximation (GGA-PW91)\(^{26}\) were performed using the Vienna Ab-initio Simulation Package (VASP).\(^{27–29}\) We used the projected augmented wave (PAW) method to describe the interaction between ion core and valence electrons and a plane-wave basis set with a kinetic energy cutoff of 350 eV (except for in mechanical property calculations where an increased cutoff energy of 450 eV was employed). The crystalline host matrices considered (c-M = Si, Ge, Sn) were modeled using 64-atom cubic supercells. The atomic configurations and energetics reported herein were calculated by relaxing all constituent atoms using the conjugate gradient method until the residual forces on each atom became smaller than 5 \times 10^{-2} \text{ eV/Å}; in mechanical property calculations, the convergence criteria was tightened up to 1 \times 10^{-6} \text{ eV}. We performed the Brillouin zone integration for periodic 64-atom supercells using a \((4 \times 4 \times 4)\) Monkhorst–Pack\(^{30}\) mesh of \(k\)-points; the \(k\)-point mesh sizes used for crystalline alloys of various compositions and supercell sizes are specified in the text otherwise. We determined diffusion pathways and barriers using the climbing-image nudged elastic band method;\(^{31}\) for each hopping step, typically eight intermediate images were employed.

We obtained the model structures for amorphous a-Na–M using \textit{ab initio} Molecular Dynamics (AIMD) simulations on the basis of the atomic configurations of a-Li–M alloys from previous studies (see ref 32 for computational details); as reasoned below, this approach turned out to be appropriate for creating optimal a-Na–M structures (at a significantly reduced computational burden when compared to starting with crystalline initial configurations). The local atomic configurations (or short-range order) of the Na–M and Li–M alloys tend to be dissimilar, as the Na–M interactions differ from the Li–M interactions in nature. Nonetheless, the a-Li–M structures are likely good initial configurations for generating the a-Na–M structures (in which Na atoms are also well dispersed in M); moreover, Na and M atoms are highly mobile at elevated temperatures, allowing facile local structure rearrangements to yield optimal a-Na–M configurations within a moderate annealing time. After replacing Li (in a-Li–M alloys) with Na, we annealed the a-Na–M structures, each containing 64 Na and M atoms, at 1500 K for 2 ps and then rapidly quenched to 300 K at a rate of 0.6 K/fs; here, a time step of 1 fs was used, and the volume of each simulation cell was allowed to vary. We used a velocity rescaling method to control the temperature and set the annealing temperature far above the alloy melting point (∼1200 K) in order to speed up the melting process while eliminating any memory effects from the initial configuration.

3. RESULTS AND DISCUSSION

A. Na Atom Behavior in Si, Ge, and Sn. A.1. Configuration and Energetics. We first determined and compared Na insertion in a crystalline host matrix c-M. In all three host materials, the tetrahedral (T) interstitial configuration has been identified to be the most favorable energetically. Upon the Na insertion, neighboring host atoms undergo strain-induced outward relaxation. To assess the relative ease of Na accommodation and corresponding host-lattice disturbances, we compared the energy (\(E_f\)) required for single Na insertion in a 64-atom c-M cubic supercell, displacements (\(\Delta\)) of the first- and second-nearest neighbors (NN\(^{1st}\) and NN\(^{2nd}\)), and the resulting volume expansion (\(\Delta V\)), as presented in Table 1.

Table 1. Predicted Formation Energies (\(E_f\) in eV) for Na at the Tetrahedral Interstitial Site in Crystalline Host Matrices (= Si, Ge, and Sn) from 64-Atom Supercell Calculations with Calculated Lattice Constants (\(a\)), First- and Second-Nearest-Neighbor Displacements in Å (\(\Delta\), NN\(^{1st}\)/NN\(^{2nd}\)), and the Corresponding Volume Expansions (\(\Delta V\))

<table>
<thead>
<tr>
<th>Element</th>
<th>(E_f) (Å)</th>
<th>(\Delta)</th>
<th>NN(^{1st})/NN(^{2nd})</th>
<th>(\Delta V) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.457</td>
<td>1.90 (= 0.58 + 1.32)</td>
<td>0.17/0.07</td>
<td>1.50</td>
</tr>
<tr>
<td>Ge</td>
<td>5.777</td>
<td>0.88 (= 0.48 + 0.40)</td>
<td>0.16/0.07</td>
<td>1.80</td>
</tr>
<tr>
<td>Sn</td>
<td>6.645</td>
<td>−0.09 (= 0.19 − 0.28)</td>
<td>0.13/0.04</td>
<td>0.90</td>
</tr>
</tbody>
</table>

\(^{2}\)For each case, the \(E_f\) is decomposed into the electronic (\(E_e\)) and strain (\(E_s\)) contributions.

Overall, the degrees of displacements are found to be the largest in c-Si and smallest in c-Sn while \(\Delta NN^{2nd}\) are significantly smaller than \(\Delta NN^{1st}\). These results indicate that the Na insertion-induced mechanical strain is the highest in c-Si, lowest in c-Sn, and drops quickly beyond the four NN\(^{1st}\); this trend can be understandable considering the difference in the effective interstitial space and stiffness between the host matrices. Given that the three host lattices have the same crystal (diamond) structure, we can expect the one with a bigger atomic size to have a larger effective space for accommodation of Na interstitials, thereby yielding smaller \(\Delta NN^{1st}\) (and \(\Delta NN^{2nd}\)). The same effect can also be anticipated from a host matrix with higher bulk modulus as it indicates a stiffer lattice to withstand the Na incorporation. Note that the covalent radii (predicted bulk moduli) for Sn, Ge, and Si are 1.40 Å (91 GPa), 1.22 Å (57 GPa), and 1.11 Å (37 GPa), respectively. Apparently, the relatively spacious Sn undergoes a minimum degree of Na-induced lattice distortion. Comparing Si and Ge, Ge has a slightly larger interstitial space but softer; considering both the geometrical and mechanical factors, the extents of outward relaxation for these two host lattices are very
comparable. Consequently, the volume expansion associated with one Na insertion is also the smallest in Sn while slightly larger in Ge and Si.

Listed in Table 1 are the formation energies (E_f) of interstitial Na in crystalline Si, Ge, and Sn. Here, the E_f is estimated relative to c-M and body-centered cubic Na (bcc-Na), i.e., $E_f = E_{Na} - (E_{Na} + E_{M})$, where E_{Na} and E_{M} are the total energies of 64-atom c-M with one Na interstitial and 64-atom c-M, respectively, and E_{Na} is the energy per atom of bcc-Na. Among the host materials considered, E_f is the highest in Si (1.90 eV), lower in Ge (0.88 eV), and the lowest in Sn (−0.09 eV); the more positive value indicates that the incorporation of Na becomes less favorable. The variation for E_f in different hosts can mainly be ascribed to two factors: (a) lattice strain, i.e., the strain induced by Na insertion may cause weakening of the host-atom bonding and thus the increase in energy, and (b) electronic interaction among the Na and host atoms (accompanied by charge transfer to the host matrix from Na) which would partially compensate for the strain effect.

In order to assess the relative strain and electronic contributions (although they are closely correlated), we calculated the energy associated with distorting a pure c-M host lattice to what it would be after Na insertion (referred to as E_s); the difference between E_s and E_f can be attributed to the electronic interaction among the Na and host atoms (E_a).

$$E_s = E_M - E_{Na}$$

$$E_f = E_s - E_c = E_{Na} - (E_{Na} + E_{M})$$

where E_{Na} and E_{M} represent the total energies of c-M before and after Na insertion, respectively.

As summarized in Table 1, we can see that the E_s values are not significantly different between the three host lattices (although E_s is smaller for Sn than Ge and Si because of the softer matrix and smaller lattice distortions). Contrarily, the variation between E_s in different hosts is substantial; E_s is negative only in Sn, indicating the affinity between Na and Sn is significantly higher than that between Na and Ge (Si). Looking at the variations of E_s and E_f, it is clear that the difference in E_f is predominantly attributed to the electronic effect, rather than the strain effect. In the next section, we will discuss the bonding interaction between Na and M in more detail.

A.2. Bonding Mechanism and Diffusion. As summarized in Table 2, our Bader charge analysis demonstrates significant electron donation from Na to the host matrices; the charge states of Na in Si, Ge, and Sn are predicted to be +0.67, +0.71, and +0.74, respectively, while the host atoms surrounding Na are negatively charged. Looking at the relative amounts of charge gains of the NN1st and NN2nd host atoms, it is clear that the excess charge is highly localized in Si within the NN1st, leading to effectively screening (or shielding) of the Na cation, whereas the charge tends to be more delocalized in Ge and Sn. Here, it is worth pointing out that the excess electrons of the surrounding host atoms arise from electron donation from Na and other host atoms, from which charges are redistributed to screen the Na cation.

As shown in the density of states (DOS) plots for Na and its four NN1st [Figure 1 (left panel)], due to the charge transfer from Na, the Fermi level is shifted above the conduction band minimum. Notice peak width for Sn 3sp3 < Ge 4sp3 < Si 3sp3, which is apparently due to a weaker Sn−Sn bond in comparison to Ge−Ge and Si−Si bonds; this also explains their relative bulk modulus values ($B_{Si} < B_{Ge} < B_{Sn}$). More importantly, there is substantial overlap between the Na 3sp3 and Si 3sp3 states, indicating a high degree of covalency. The Na 3sp3 peak intensity gradually decreases as the host matrix changes from Si to Ge to Sn. The Na–Sn hybridization appears to be relatively less strong, which is also supported by the charge density difference ($\Delta \rho$) plots in the right panel (that clearly demonstrate the lessening $\Delta \rho$ isosurface volume). The analysis implies that the Na−Sn interaction would be more ionic in nature compared to the Si and Ge cases.

Next, we evaluated the activation energies (E_a) for Na migration in the crystalline Si, Ge, and Sn matrices. As depicted in Figure 2, a Na interstitial is found to undergo migration by jumping between adjacent T-sites via a hexagonal (H)-site (saddle point). The E_a is predicted to be 1.08, 0.78, and 0.53 eV for Na (Li) diffusion in crystalline Si, Ge, and Sn, respectively.

As summarized in Table 2, our Bader charge analysis demonstrates significant

| Table 2. Bader Charges Predicted for Interstitial Na and Its First- and Second-Nearest Neighbors (NN1st and NN2nd) in Crystalline Host Matrices (= Si, Ge, and Sn) |
|-----------------|---|---|---|
| | Si | Ge | Sn |
| Na | +0.67 | +0.71 | +0.74 |
| NN1st | −0.20 | −0.10 | −0.11 |
| NN2nd | −0.11 | −0.07 | −0.06 |

Figure 1. Left panel: projected density of states (DOS) of Na and its four nearest neighbors in crystalline Si [(a)], Ge [(b)], and Sn [(c)]. The vertical dashed line indicates the Fermi level position. Right panel: charge density differences ($\Delta \rho$) before and after Na insertion; the gray and red isosurfaces represent the regions of loss ($\sim 0.0012 \epsilon \text{Å}^3$) and charge gain ($\sim 0.002 \epsilon \text{Å}^3$), respectively.

Figure 2. Predicted pathway and activation barriers (E_a in eV) for Na (Li) migration in crystalline Si, Ge, and Sn. Na (Li) migration occurs by jumping between two adjacent local minima located at the T-sites [(a) and (c)] via a hexagonal transition state at the H-site [(b)].

14845

DOI: 10.1021/acs.jpcc.5b01099
J. Phys. Chem. C 2015, 119, 14843−14850
in Si, Ge, and Sn, respectively. The relatively smaller E_a in Sn can be attributed to two factors: (i) host–lattice rigidity and (ii) Na–host interaction. Among the host matrices, the more flexible lattice of Sn expands easily to allow Na to pass through, in addition to its relatively larger atomic size that renders a more effective migration channel.

In addition, a smaller E_a can also be expected if the bonding interaction between the diffusing Na and its neighboring host atoms is weaker. According to the bonding analysis discussed earlier, the degree of covalency is found to be the smallest in Na–Sn bonds, larger in Na–Ge, and the highest in Na–Si bonds. Therefore, Na can more easily migrate in M with a lower E_a. Indeed, if a Na atom was displaced from its equilibrium site (T-site) by 0.02 Å in $\pm x$, $\pm y$, and $\pm z$ directions, the restoring force experienced is predicted to be the smallest in Sn and largest in Si (see Table S1). It is also worth mentioning that, in comparison to Li diffusion in c-M, 24 the E_a values associated with Na diffusion are appreciably larger. For instance, E_a for Li diffusion in c-Si is only 0.62 eV and increases to 1.08 eV for Na diffusion. The increase in E_a would be attributed largely to the relatively larger atomic size of Na and consequently the increased covalency of Na–M bonds.

Such a sizable barrier (i.e., poor rate capability) makes Si an unattractive candidate for Na-ion battery anodes; therefore, the literature focuses on Sn and occasionally Ge.

B. Structure, Energetics, and Properties of Sodiated Si, Ge, and Sn.

B.1. Energetics of Na–M Alloy Formation. In the previous section, we examined the behavior of an isolated Na atom in group IV host matrices (c-M = Si, Ge, and Sn). From now, we discuss how the structure, energetics, and mechanical and diffusion properties of Na–M alloys vary with Na content. According to the Na–M phase diagrams, stable intermetallics can form at several Na:M composition ratios; however, room-temperature electrochemical sodiation may lead to amorphous phases. In order to evaluate the relative stabilities of Na–M alloys, we calculated the mixing enthalpies for amorphous and crystalline Na$_x$M$_{1-x}$ with respect to bcc-Na and a-M (c-M for crystalline phases).

Figure 3 shows the predicted mixing enthalpies per atom (ΔE_{mix}); for each composition of the amorphous alloys, we obtained the average value reported based on three independent 64-atom samples. In general, all three Na–M systems show a trend that ΔE_{mix} decreases with Na content and falls to a minimum around $x = 0.5$, demonstrating that the formation of Na–M alloys is energetically favorable. The deepest energy valley in the Na–Sn alloy suggests that Na–Sn alloying is the most energetically favorable, followed by Na–Ge alloying, and Na–Si alloying being the least favorable. It is also worthwhile to note that the ΔE_{mix} for the Na–Si alloy is predicted to be substantially less than that for the Li–Si alloy, 32 implying that Si sodiation may not be as facile as lithiation. Moreover, our results show that the energy valleys for the Na–Si and Na–Ge alloys occur at 50 at. % Na, while that for the Na–Sn alloy tends to shift to a higher Na content. This may suggest that Sn would have a higher sodiation capacity (per mole) than Si and Ge, which is consistent with previous experimental observations; 33,34 a fully sodiated composition for Si (Ge) is Na:Si (Ge) = 1:1 while that for Sn is found to approach Na:Sn = 3.75:1.

In addition, we calculated the formation energies (E_f) of a-Na$_x$M alloys as a function of Na:M ratio ($0.33 \leq y \leq 3$), shown in Figure 4. By neglecting the entropy and pressure terms, the free energy of the sodiated configurations (shown in Figure S1) can be approximated by the total energy at 0 K, and the E_f can be obtained by

$$E_f = E_{Na,M} - (yE_{Na} + E_M)$$

where $E_{Na,M}$ is the total energy of the a-Na$_x$M structure divided by the number of M atoms, y is the number of Na atoms per M atom, and E_{Na} and E_M are respectively the energies per atom of bcc-Na and a-M.

The E_f of a-Na$_x$Sn is below that of a-Na$_x$Ge; both decrease monotonically with increasing y, but the descending trend is not as steep in a-Na$_x$Ge alloys, especially for $y \geq 1$. Given that the negative and descending values of E_f are indicative of an energetically favorable sodiation process, our results suggest that Sn can be favorably sodiated until $y \geq 3$, while the sodiation of Ge beyond $y = 1$ appears to be possible but energetically less likely. (This can be clearly observed in the comparisons of the crystalline phases, although due to the amorphous nature the difference in sodiation behavior between a-Na$_x$Ge and a-Na$_x$Sn appears insignificant.) Conversely, the E_f of a-Na$_x$Si is the highest; it first exhibits a decreasing trend ($0.33 \leq y \leq 1$) and then increases as y becomes greater than 1, indicating that Si sodiation is only favorably up to the formation of NaSi phase.

Figure 3. Variations in the mixing enthalpy per atom (ΔE_{mix}) in terms of Na content (x) for a-Na$_x$M$_{1-x}$ alloys; $\Delta E_{mix} = E_{Na,M_{1-x}} - xE_{Na} - (1 - x)E_M$ where $E_{Na,M_{1-x}}$, E_{Na}, and E_M are the energies per atom of the alloy examined, bcc-Na, and a-M, respectively. Error bars are also shown but in most cases are negligible.

Figure 4. Formation energy (E_f) in terms of Na content (y) for a-Na$_x$M alloys (open symbols), estimated based on the predicted energetics in Figure 3. For comparison, the E_f of their c-Na$_x$M phases ($y = 1$ and 3.75) are also plotted (filled symbols).
Above are our assessments on the sodiation processes in Si, Ge, and Sn based on E_{min} and E_1 in the amorphous structures. Although this gives a reasonably good approximation, the values determined based on the small amorphous samples considered tend to be scattered; therefore, more accurate evaluations can be obtained based on calculations using their corresponding crystalline phases. In Figure 4, we also compare the variations in E_i for c-Na_iM as y increases from 1 to 3.75. c-$Na_{15}Si_4$ and c-$Na_{15}Ge_4$ are not stable intermetallics, but for the purpose of comparison, they were constructed to have the same crystalline structure as c-$Na_{3}\cdot Sn_4$ (see Table S2 for the corresponding crystallographic descriptions). Only in the case of Sn, the E_i of c-$Na_{3}\cdot 7\cdot M$ is lower than that of c-$Na_{0.00}\cdot M$, which clearly demonstrates that among the three host materials considered, only Sn can be favorably sodiated up to $y = 3.75$.

B.2. Structural Evolution and Mechanical Properties. Next, we looked at the structural evolution and mechanical properties of sodiated Si, Ge, and Sn. The structural changes of a host material M with sodiation were analyzed by calculating radial distribution functions (RDFs) for Na–Na, Na–M, and M–M pairs; the RDF plots are shown in Figure 5. Here, the RDF $g(r)$ is given by

$$g(r) = \frac{V}{N} \frac{n(r)}{4\pi r^2 \Delta r}$$

where $n(r)$ denotes particles in a shell within the region $r \pm \Delta r/2$, N is the number of particles in the model volume V, and Δr represents the shell thickness.

For the $Na_{M_{1-x}}$ alloys considered, there exhibits no sharp second-neighbor peak, confirming their amorphous-like nature (that lacks a long-range order). As the Na content increases, the Na–M and Na–Na peaks become stronger, as also seen in lithiated a-Li_iNa_{1-x}.

However, unlike the lithiated cases, there is no significant dwindling of M–M peaks with sodiation; instead, the M–M peaks tend to become rather sharp as the Na content increases from $x = 0.25$ to 0.5. According to our structural analysis, this is attributed to the strong tendency of sodiated $Na_{M_{1-x}}$ alloys to form compact M clusters, leading to the sharp M–M peaks at Na:M = 1:1 ratio (see also corresponding crystalline phases in Figure S2 for clarity).

On the basis of the calculated structures, we also evaluated the changes of volume (V) with atomic ratio between Na and M (i.e., y in a-Na_iM) and compared them to those of the a-Li_iM systems as shown in Figure 6: for each alloy, the V is normalized with respect to that of the pure a-M matrix.

The calculations above clearly demonstrate the structural transformation as the Na content increases. In order to evaluate how these changes affect the mechanical properties, we calculated the bulk moduli (B) of c-Na_iM phases at $y = 0$ and 1, which tends to be the highest sodiation concentration for Si and Ge. The B values summarized in the inset of Figure 6 are obtained by fitting the Murnaghan equation of state to the corresponding energy versus volume curve; here, ±5% volume

Figure 5. Radial distribution functions $g(r)$ for a-$Na_{M_{1-x}}$ alloys ($x = 0.25$ and 0.5) with the corresponding atomic structures shown in the inset.

Figure 6. Variation in the volume of a-Na_iM and a-Li_iM alloys in terms of Na and Li contents (y). For each alloy, the volume (V) is normalized with respect to that of the pure a-M matrix. The calculated bulk moduli (B) of c-Na_iM and of c-Li_iM phases at $y = 0$ and 1 are summarized in the table (inset): a and b values are from refs 22 and 38.
variations in the alloys were achieved by imposing uniform tensile and compressive stresses. For comparison, we also listed the B values calculated by others (in parentheses) and the B of c-LiM (γ = 0 and 1).22,38

\[
E(V) = E_i \left(\frac{BV}{B'} \right) \left(\frac{V_0/V}{B' - 1} + 1 \right) = \frac{V_0B}{B' - 1}
\]

where \(E \) and \(E_i \) are respectively the total energies of bulk \(NaM \) in a supercell at volume \(V \) and \(V_0 \) (equilibrium), \(B \) is the bulk modulus, and \(B' \) refers to the pressure derivative of the bulk modulus.

Our results show that the \(B \) of the c-NaM alloys decrease with Na concentration. As \(y \) increases from 0 to 1, the Si, Ge, and Sn matrices are softened by 55.1%, 40.4%, and 36.1%, respectively. We also find that the degree of softening caused by sodiation is much more substantial than by lithiation (39.7%, 29.1%, and 1.5%, respectively), which is likely attributed to the particular atomic arrangement of c-NaM alloys at Na:M = 1:1 ratio. As shown in Figure S2, the c-NaM phases are composed of tetrahedral M clusters surrounded by Na atoms. Such arrangements lack extended M networks to provide strong resistance to deformation, resulting in the lower \(B \) values.

Conversely, lithiated c-LiM alloys at Li:M = 1:1 ratio still retain well-connected M sublattices, which are composed of three-folded M atomic layers in puckered conformation,21,22,39 and are thereby more resistive to deformation (higher \(B \) values).

B.3. Na Diffusion Behavior. AIMD simulations were performed to predict the diffusivity of Na (\(D_{Na} \)) at room temperature in the a-NaM alloys; \((Na/M = 1 \) was used as it is the fully sodiated phase for Si and Ge). For each alloy, the mean-square displacements (MSD) of chosen atoms were calculated by averaging three different samples at a given temperature (800, 1000, and 1200 K); MSD = \(\langle R_i(t)^2 - R_i(0)^2 \rangle \), where \(R_i(t) \) is the position of atom \(i \) at time \(t \). The Einstein relation \(D = \langle MSD \rangle / 6t \), with the MSD profiles was used to estimate \(D_{Na} \) values; the angle brackets indicate the ensemble average over an AIMD simulation time. We typically ran AIMD up to 10 ps, which appears to be sufficient to obtain well converged results. After disregarding the first 2 ps, we estimated the reported \(D_{Na} \) values from linear fits over a time interval of the following 8 ps and constructed an Arrhenius plot of \(\ln(D_{Na}) \) versus 1000/T based on \(D_{Na} \) at different temperatures for each alloy system (see Figure S3); here, the temperature was controlled using the Nose–Hoover thermostat. Predicted prefactor \(D_0 \) diffusion barrier \(E_a \) and room-temperature \(D_{Na} \) values are summarized in Table 3.

<table>
<thead>
<tr>
<th>(E_a) (eV)</th>
<th>(D_0) (cm²/s)</th>
<th>(D_{Na}) (298 K) (cm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.31</td>
<td>1.30 \times 10^{-3}</td>
</tr>
<tr>
<td>Ge</td>
<td>0.27</td>
<td>0.95 \times 10^{-3}</td>
</tr>
<tr>
<td>Sn</td>
<td>0.26</td>
<td>0.90 \times 10^{-3}</td>
</tr>
</tbody>
</table>

In comparison to single Na diffusion in c-M (as reported in section A.2), the \(E_a \) in a-NaM are predicted to be much smaller, especially for the case of Sn, where \(E_a \) is reduced from 1.08 eV in c-Sn to around 0.26 eV in a-NaSn. The predicted \(D_0 \) values are on the order of 10⁻³ s⁻¹, comparable to the prediction based on harmonic transition state theory.40 Taking the \(D_0 \) and \(E_a \) values, we see that \(D_{Na} = D_0 \exp(-E_a/kT) \) in a-NaM of increasing \(y \) would rise by orders of magnitude from \(\times 10^{-22} \), \(\times 10^{-17} \), and \(\times 10^{-12} \) cm²/s (for single Na diffusion in c-Si, c-Ge, and c-Sn) to \(\times 10^{-9} \), \(\times 10^{-5} \), and \(\times 10^{-2} \) cm²/s in a-NaSi, a-NaGe, and a-NaSn, respectively. The drastic increase of Li diffusivity has also been demonstrated during lithiation,8 which can be well explained by the fact that both lithiation and sodiation cause the host matrices to undergo softening and disintegration.

While both \(D_{Na} \) and \(D_{Li} \) are very sensitive to the host materials only at early stages of solidation/lithiation, the former tend to be orders of magnitude smaller, especially near the onset of sodiation/lithiation (i.e., single Na or Li diffusion in c-M). Once the host matrices are moderately sodiated, \(D_{Na} \) in a-NaM alloys become comparable in value, as also seen in the lithiated cases.24 Notice also that \(D_{Na} \) in a-NaM are predicted to be approximately 1 order of magnitude larger than \(D_{Li} \) in a-LiSi (≈ 5.16 \times 10⁻¹⁰ cm²/s),11 although Na is larger and heavier than Li. One possible explanation may be that given the atomic arrangement (i.e., compact M fragments/clusters dispersed in Na), Na may undergo diffusion in a-NaM while experiencing less interactions with the host atoms. That is Na diffusion would be very similar to the case of self-diffusion, where the experimentally measured Na self-diffusivity at room temperature is relatively high (≈ 10⁻⁸ cm²/s),42 similar to our predicted \(D_{Na} \) values in a-NaM.

In short, our results highlight that the sodiation process, involving Na incorporation and diffusion, is constantly evolving and becomes more facile with increasing Na content. This finding not only clarifies the relationship between \(D_{Na} \) and host materials at different stages of sodiation (lithiation) but also brings on a new perspective to reevaluate Si as an anode material for NIBs. That is, utilization of presodiated Si (instead of pure Si) in combination with controlled cycling voltage (i.e., Si is never fully desodiated) would be a viable approach to the favorable sodiation of Si, although its initial capacity will decrease to a certain extent; this might warrant further experimental investigations.

4. SUMMARY

Comparative analyses based on DFT-GGA calculations were carried out to examine the sodiation behaviors of group IV semiconductors (= Si, Ge, Sn). We first examined the incorporation and diffusion of an isolated Na atom in the crystalline host matrices (c-M), and then the formation energetics and structural/mechanical/diffusion properties of Na–M alloys with varying Na contents. While a Na atom is found to favorably exist at a tetrahedral interstitial site in the diamond structure of M, the Na-induced lattice disturbance is minimal in Sn but significant in Si (due to its relatively smaller interstitial space and higher stiffness). As such, Na incorporation is predicted to be the least and most favorable in Si and Sn, respectively, which tends to be predominantly attributed to the electronic effect rather than the strain effect. That is, although the relatively softer Sn lattice enables flexible expansion to incorporate the Na interstitial, the favorable Na–Sn bonding interaction contributes more substantially to the overall stabilization of the system upon Na accommodation. According to our Bader charge analysis, there is significant electron transfer from Na to the host matrices (0.67e, 0.71e, and 0.74e in Si, Ge, and Sn, respectively). We also find significant hybridization between the Na 3sp² and Si 3sp² states, indicating a high degree of covalency, while the covalent bonding...
contribution dwindles as the host matrix changes from Si to Ge to Sn. Our calculations predict that a Na interstitial undergoes migration by overcoming relatively larger barriers (E_y) than required for Li diffusion: E_y for Na (Li) diffusion was calculated to be 1.08 (0.62), 0.78 (0.44), and 0.53 (0.39) eV in Si, Ge, and Sn, respectively. Based on our DFT calculations, it is clear that the formation and migration of interstitial Na (Li) in c-M are highly dependent on the flexibility of M lattice, as well as the relative sizes and interaction between Na (Li) and M. Overall, our results are consistent with the trend predicted at the onset of lithiation. Among the three host materials considered, Na incorporation (in the dilute concentration) is found to be the most facile in Sn and the least so in Si.

AIMD simulations were employed to determine the structure of a-Na–M in terms of Na content. The predicted mixing/formation enthalpies of the amorphous alloys demonstrate that Na alloying with M is energetically favorable while the most favorable compositions are predicted to occur around Na:M = 1:1 for M = Si and Ge, while 3.75:1 for Sn. The volume of the a-Na-M alloys tends to increase nearly linearly with y, which is also the case for lithiated a-Li,M; only the degree of expansion is more extensive during the sodiation process. The amounts of volume expansion for a-NaSi, a-NaGe, and a-Na3.75Sn are predicted to be about 230%, 200%, and 480%, respectively, as compared to corresponding volume expansions of 160%, 140%, and 260% for a-LiSi, a-LiGe, and a-Li3.75Sn. As the Na content increases, the host lattice weakens and undergoes disintegration to form compact clusters. The structural changes cause softening of the Na–M alloys. According to our calculations, the bulk modulus (B) of crystalline Na,M alloys is reduced by 55.1% (Si), 40.4% (Ge), and 36.1% (Sn) as y increases from 0 to 1. Interestingly, the degree of softening is noticeably greater compared to what was predicted for corresponding lithiated c-Li,M, i.e., 39.7% (Si), 29.1% (Ge), and 1.5% (Sn). This is likely attributed to the specific atomic arrangement; that is, the formation of isolated M clusters leads to the loss of lattice connectivity in the Na,M alloys, thereby lowering the B values. Lastly, the room-temperature diffusion coefficients of Na (D_{Na}) in sodiated Si, Ge, and Sn were estimated. Our results indicate that D_{Na} is highly sensitive to the host material only at early stages of sodiation. Once the host matrices are moderately sodiated, D_{Na} in a-Na-M alloys become comparable in value. Owing to the formation of compact M clusters in highly sodiated phases (\approx a-Na,M), D_{Na} are predicted to approach the experimentally measured self-diffusivity (10^{-8} cm2/s at room temperature), approximately 1 order of magnitude larger than D_{Li} in a-LiSi despite the heavier and larger size of Na.

As highlighted by our results, the sodiation of Si, Ge, and Sn share many similarities with their corresponding lithiation processes; both are constantly evolving and become more facile with increasing alkali content. Sn, as a host material, demonstrates clear advantages over Ge and Si during the initial stages of sodiation; however, such distinctions among the three alloy systems tend to diminish quickly in their highly sodiated phases. This understanding in turn hints at the possibility of utilizing presodated Si to overcome the sluggish sodiation at the cost of a slightly compromised initial capacity. Overall, these fundamental findings add to the understanding of the sodiation behavior of Si, Ge, and Sn as well as the properties of a-Na,M alloys. Furthermore, the improved understanding from the comparative study of the sodiation versus lithiation processes can help develop next-generation anode materials for Na-ion batteries.

REFERENCES

ASSOCIATED CONTENT

Supporting Information
AIMD snapshots of a-Na,M (M = Si, Ge, and Sn; 0.33 ≤ y ≤ 3), optimized atomic configurations of c-Na,M, Arrhenius plots constructed for estimation of Na diffusion parameters, and additional calculation results including the restoring forces experienced by a Na atom upon displacement as well as the lattice constants of c-Na,M and c-Na3.75M. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jp5010999.

AUTHOR INFORMATION

Corresponding Author
Tel 1-512-471-4847, Fax 1-512-471-7060, e-mail gshwang@che.utexas.edu (G.S.H.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Robert A. Welch foundation (F-1535). We thank the Texas Advanced Computing Center for use of their computing resources.

The Journal of Physical Chemistry C

